Palpitations/Arrhythmias

Ebrahim Barkoudah, MD
Clinical Instructor in Internal Medicine
Harvard Medical School
Assistant in Internal Medicine & Pediatrics
Massachusetts General Hospital
MGH Chelsea
Chelsea, Massachusetts

Disclosure:
Reports no financial interests relevant to this presentation

Goals

• Understand the basic approach to arrhythmias in the Urgent Care setting
 – Identification and triage
• Identify specific details on initial management and stabilization
• Review examples of real cases for application into practice

Electrocardiogram

• 12 lead ECG is essential for diagnosis, documentation and treatment
• Monitors, alone, are not adequate and can be misleading
• Compare a minimum of 2 leads to reduce any possible artifact

Electrocardiogram

• Arrhythmias in the urgent care setting are very common and mostly benign.
• However, serious fatal rhythms may occur.
• The sensation of palpitations is a very common general symptom. Most of the time a routine ECG will give a definite diagnosis or cause. But is it indicated?
• There is an accumulated body of evidence that outpatient ECGs should be stored or transmitted to a central station for correct documentation. We currently use the MUSE software.
• Automated readings of ECGs do not always carry an accurate diagnosis.
 – example: “digitalis effect”
• The clinical picture and presentation will determine the course and management.

Electrocardiogram

• Routine ECGs at the time of the complaint can carry a 30-60% variability in determining the diagnosis.
• The key to accurately diagnosing and treating arrhythmias is having a reasonable knowledge of ECGs along with relating the clinical presentation to laboratory findings.
• There is no indication to perform screening ECGs in the setting of nonspecific symptoms (except in special circumstances).
• The recommendation from the American College of Cardiology and the American Heart Association emphasize that ECGs should be done for validation of arrhythmias during the clinical presentation.

ECG Chest Leads

Image reprinted with permission from eMedicine.com, 2009.
ECG Waveforms

- 0.20 SECONDS
- 1.0 M VOLTS

Electrocardiogram - Normal

Artifacts

Premature Ventricular Contraction

Bigeminy

Management of Arrhythmias in Urgent Care:

Initial rapid assessment and triage:
- Any tachycardia should be taken seriously
 - To a lesser degree for sinus tachycardia in anxiety, dehydration
- Vital signs determine the severity index for rapid triage
- Rapid triage should focus on medical history highlights
- Management
 - Acute bed with cardiac monitor and equipped with DC pads
 - Initiate ABC protocol
 - IV access
Management of Arrhythmias in Urgent Care:

Provider History and Exam:
- Concurrent clinical history
 - Chest pain, SOB, Syncope, etc.
- Triggers/Causes for clinical picture
- Exam
 - Focus on Neuro- Cardiac- Pulmonary findings

Diagnostics:
- ECG & continuous cardiac monitor
- Electrolytes
- Cardiac enzymes
- BNP/NT BNP
- Digoxin level
- ± UDS
- Imaging
 - CXR
 - Portable Echocardiogram
 - CT

Medical Decision-Making:
- Convert or not convert any arrhythmia
 - Clinical decision
 - Dependent on stability of the case
- Pace or not to pace
 - Temporary solution
- Alert ED/Cardiac Unit
- Secure transfer to the facility

Arrhythmias

- Arrhythmias can be a single manifestation of multiple psychological and hormonal disorders (physiological response)
 - Sinus tachycardia: In the setting of hyperthyroidism, anxiety attacks and pheochromocytoma
 - Bradycardia: Cushing disease
- There is a strong association between illicit drug use and arrhythmias
 - Example: Cocaine and its relationship with ventricular arrhythmias and sudden death
- One of the highest risks for developing arrhythmias is patients with recent myocardial injury (ACS)
 - Multiple observational and randomized clinical trials addressed this phenomenon of arrhythmias and subsequent sudden-death

Approach to Arrhythmias

Three Essential Questions:
- Heart rate
- QRS width
- P wave

Arrhythmias can present in a wide range of manifestations
- Palpitations
- SOB
- Vertigo
- Syncope

Currently, there are no observational studies evaluating the etiology of arrhythmias in Urgent Care settings.
Approach to Arrhythmias

QRS Rate:
- Fast
- Slow
- Irregular

QRS Width:
- Normal
 - Adults: < 120 ms
 - Pediatrics: age dependent
- Narrow
 - Sinus
 - SVT or Atrial Ectopic
 - Junctional
- Wide
 - Ventricular
 - Aberrancy
 - bundle branch block
 - Accessory Pathway

Approach to Arrhythmias

P waves
- None
 - Hidden in QRS or T
- Single or multiple
- Flutter or fibrillation
- Normal or abnormal axis
- Relationship with QRS

Bradycardia

- Definition: QRS complex count < 60/min
- Sinus Bradycardia is fairly common in athletic young patients. This finding should be considered a normal physiological response
- Bradycardia is the heart conduction system response to β-blocker medications

Mechanisms of Bradycardia

- Sinus Bradycardia
 - Physiological
- Increased parasympathetic tone
 - Athletes, sedation, hypoxemia
- Cushing's Triad
 - Increased ICP
- SA node dysfunction
 - Sick Sinus Syndrome
- Anti-arrhythmic Medications
 - Digitalis
- Associated with junctional or ventricular escape rhythms
Mechanisms of Bradycardia

- First degree: AV nodal dysfunction
 - Prolonged PR interval
 - Narrow QRS
 - All beats conducted
- Second degree: Intermittent failure of AV conduction
 - Mobitz type I
 - Progressive prolongation of PR interval
 - Also known as Wenckebach
 - Better prognosis than Mobitz type II
 - Mobitz type II
 - PR interval remains constant
 - Dropped/unconducted P wave

- Third degree: Absence of AV conduction
 - Dissociation of p-wave & QRS complex (complete block)
 - Serious condition
 - Treat with temporary pacing
 - Transfer to cardiac facility for further management
 - Pacemaker

Sinus Bradycardia

First Degree AV Block

Second Degree AV Block – Mobitz Type I
Second Degree AV Block – Mobitz Type II

Third Degree AV Block – Complete Block

Treatment of Bradycardia

- Epinephrine
- Atropine
- Isoproterenol
- Pacing
 - Temporary leads
 - Transthoracic
 - Transesophageal

Tachycardia

- Definition: QRS complex count > 100/min
- Tachycardia:
 - Increased Automaticity/Ectopic
 - Atrial
 - Junctional
 - Ventricular (AET, JET, VT)
 - Re-entry
 - Accessory pathway: (AVRT)
 - “Dual” AV node physiology (AVNRT)
 - Atrial flutter/fibrillation (IART)

Supraventricular Tachycardia

- Definition: The rhythm that starts (triggers) above the ventricular conduction system.
- SVT is commonly known as AVRT (re-entry mechanism). But it also occurs from increased automaticity in the atrial.
- Adenosine is the “magic” medication which acts to reset the conduction.
- Here is an example:
Supraventricular Tachycardia

Case #1
- Narrow QRS rhythm at 220 bpm, patient appears sedated, no palpable pulses
- Treatment:
 - Adenosine
 - Amiodarone
 - Cardioversion
 - Digoxin
 - Beta blocker
 - Intubation
 - Lidocaine
 - Vagal maneuvers

Case #2
- Narrow QRS rhythm at 220 bpm, with low BP
- Treatment:
 - Adenosine
 - Amiodarone
 - Cardioversion
 - Digoxin
 - Beta blocker
 - Intubation
 - Lidocaine
 - Vagal maneuvers

Treatment for SVT: The First Minute
- Vagal stimulation
- Adenosine (with ECG)
- Repeat adenosine and vagal after other medical Rx. Other – Amiodarone, digoxin, beta blockers, verapamil: slow conduction

Treatment for SVT: The First Minute

AVNRT
- AV nodal re-entrant mechanism
- Common and mostly benign
- Triggered anterograde pulse of retrograded wave through secondary pathway during refractory period
- No ventricular involvement

AVRT
- AV re-entrant mechanism
- Rare
- Extra conducting pathway
- Wolf-Parkinson-White syndrome
- The use of AV blockers can stimulate the conduction and cause ventricular activation

Re-entry Tachycardias

1) Cardioversion
 - Indications: SOB, alter MS, hypotension
 - Synchronized, ½ to 4 J/k
2) Adenosine
 - 0.1-0.3 mg/kg IV push with large flush
3) Vagal maneuvers:
 - Valsalva maneuver
 - Carotid massage (caution in older patients)
 - Orbital pressure and ice on face
Wolf-Parkinson-White Syndrome

Re-entry Tachycardias

- Atrial Fibrillation
 - Disassociation between the atrial electrical activity and its mechanical function
 - P waves are irregular and variable
 - Ventricular response: rapid vs. slow
 - Clinical Classification: acute, chronic, paroxysmal/intermittent
 - Rate control vs. Rhythm control
 - Anticoagulation treatment

- Management
 - Establish ABCDs
 - Focus on prior arrhythmia diagnosis and treatment
 - Any coexisting etiologies
 - ACS, PE, CVA, etc.

Atrial Fibrillation

- RVR with stable BP
 - Management
 - If new onset, transfer for further evaluation.
 - Rate control
 - CCB
 - B-blocker
 - Amiodarone can be used but can cause conversion
 - Echocardiogram
 - Electrolytes (K and Mg)
 - Discharge from the hospital after rate control and anticoagulation as needed

- RVR with unstable BP
 - Management
 - Start ABCDs
 - Prepare for cardioversion
 - Alert the medical facility
 - ± Ventricular stabilizer
 - Amiodarone

Atrial Fibrillation with Ventricle Pacer
Re-entry Tachycardias

• Atrial Flutter
 – Atrial tissue activates a large circuit around the atrium, mostly from R atrium.
 – P rate
 • 240-440 according to Type: I or II
 • Conduction across AV is more common as 2:1 or 4:1 vs. 3:1 or 5:1
 – Goal
 • Control rate as in AF along with anti-coagulation

Atrial Flutter

Increased Automaticity/Ectopic Tachycardias

• Junctional Ectopic Tachycardia (JET)
 – Management
 • Medications: Amiodarone, Digoxin, Procainamide, Propafenone, Flecainide, Sotalol
 • Supportive
 • Pacing

Ventricular Tachycardias

• Rapid, dissociated rhythm with wide QRS complex
• The result of abnormal cardiac tissue with increasing focal automaticity ± re-entry
• Capture beat: sensing the anatomical conduction pulses
• Nonsustained VT < 30 seconds

Ventricular Tachycardia

Ventricular Fibrillation
Treatment for Ventricular Tachycardia

- IV Amiodarone:
 - 5-10 mg/kg bolus by 1-2 mg/kg slow push over 5 minutes, repeat q10-20 minutes
 - 10 mg/kg/day IV infusion x 4-14 days
 - Convert to q6h bolus therapy to minimize leaching of plasticizers from IV tubing
- Lidocaine 1 mg/k bolus
- Cardioversion ½ to 4 J/kg (Pediatrics) or 100-200 J

Cardioversion

- Can be applied in situations of arrhythmias affecting the stability of blood pressure
- Prompt approach will result in better outcome
- Sedation or paralyzing protocol should be applied as the patient can awaken during the procedure
- Observational studies demonstrated cardiac damage when >200J were used

Fatal Rhythm: Compromised Vital Signs

- Any life-threatening arrhythmias should be addressed promptly
- Institute the ABCD protocol steps
- Important to manage arrhythmias and address the reason for arrhythmias/primary diagnosis: ACS, PE, CVA

Cardiac Pacemakers:

- There are an increasing number of patients with pacemaker and ICD devices that requires special knowledge with the physiology of the device management
- Pacemaker abnormalities: Device vs. leads
- Require special attention to medications and electrolytes
Irregular Rhythms

Differential:
- Sinus arrhythmia: sinus pause, sick sinus syndrome, sinus exit block
- Premature atrial contractions, wandering atrial pacemaker
- Atrial fibrillation or flutter with variable conduction
- 2nd degree AV block
- Premature ventricular contraction

Antiarrhythmic Classification

The most common medications used for stabilization of arrhythmias in the urgent care setting according to their antiarrhythmic classifications are:
- Class IA: Procainamide and Quinidine
 — Usually not often used
- Class IB: Lidocaine and Phenytoin
 — Lidocaine in ventricular arrhythmias
- Class IC: Flecainide
 — For conversion of Atrial fibrillation
- Class II: β-Blockers
- Class III: Amiodarone and Sotalol
- Class IV: CCB - nondihydropyridine type
 — Verapamil* do not use in certain conditions

Couple Points from our Practice

- Medications could affect the normal cardiac conduction including medications use in psychiatric, hormonal or pulmonary diseases
- Cardiac monitoring in the Urgent Care setting may reveal an accurate diagnosis while the patient is waiting for further work-up or to be transferred to a higher level of care facility